Что такое нейронная сеть? Вот на пальцах – это огромный сервер? Программа? Или что? Нейронная сеть – это не какая-то физическая программа, скорее, метод машинного обучения на тех или иных данных.

Коротко говоря, существуют простые схемы: калькулятор складывает один и один, получается два, но и все. А есть более сложные, когда машина сама учится действовать так, чтобы имитировать деятельность нейронных связей в мозгу человека. Это и есть нейросеть.

Как и настоящая нейронная сеть в мозгу человека, она тоже состоит из нейронов, – только представленных математическими функциями, а не живыми клетками.

То есть это такой Excel, но со способностью сопоставлять данные и выявлять закономерности?

Excel – это в некотором роде тоже «калькулятор», просто все его функции зашиты в строчках, которые так и называются – функции или формулы. Сам по себе он ничего не анализирует, только выполняет чисто математические действия.

От обычной программы – даже очень крутой – нейросетка отличается тем, что у нее в базе постоянно появляются новые данные, на которых вы ее обучаете. От этого зависит то, насколько хорошо она работает. Даете вы ей тысячу готовых решений, она обучается, и на новую задачу выдает вам решение, точное на условные 50 %. А даете миллион – и она дает ответ, точный на условные 99 %.

Допустим, есть у вас программа, которая распознает текст на фото. Заливаете фото и получаете результат: в целом, нормальный, но чуть-чуть кривой. Где-то что-то не совпадает, например, иногда «ы» распознается как «ь!». А вот если у вас нейросеть, которая не только действует по заданному алгоритму, но и постоянно обучает свои нейронные связи, увеличивает базу, регулярно пересобирает собственную конфигурацию, чтобы повысить точность работы, то уже через полгода эта точность повысится до условных 99 %.

Если нужен какой-то простой и понятный пример, то это, скорее, Photoshop. Вы нажимаете кнопочку улучшения, и он, исходя из данных, на которых когда-то обучался редактированию фотографий, «принимает решение» о том, как поправить цвета, контрастность и так далее. Поэтому Excel – не нейросеть, а вот некоторые возможности новых версий Photoshop строятся на машинном обучении; иногда – с использованием нейросетей.

Значит, сам вопрос о том, где локализуется нейросеть, некорректный?

Верно, некорректный. Она вообще не может нигде локализоваться, потому что это метод. Точно так же нигде не может «локализоваться», скажем, методика коррекции дислексии или способ запекать мясо.
Продвигаем сайты

Быстро и эффективно
Подробнее
Продвигаем сайты
Какие есть нейросети вообще – или это все одна сущность

Нейронная сеть и искусственный интеллект – это одно и то же?

Нейронка – это один из способов реализации искусственного интеллекта. Когда мы говорим про ИИ, то имеем в виду вообще все машинные вычисления. Включая те, которые действуют по строго заданным параметрам, и, напротив, те, которые сами анализируют ситуацию. Вот нейронная сеть относится ко второму типу – она сама формирует новые данные на основе входящих.

Кто придумал нейросети?

Четкой границы между «вот нейронки не было» и «а вот ее взяли и создали», нет. То есть кто-то сначала написал условный калькулятор, потом кто-то другой написал генератор фраз, потом еще кто-то дошел до мысли «почему бы не добавить возможность связывать их в осмысленный текст»… таким образом человеческая мысль добралась до создания нейронных сетей, аналогичных нейронным связям в мозге.

Не в последнюю очередь здесь оказали влияние поисковые системы: главные нейросети, с которыми сейчас работает человек, связаны именно с поисковиками. В частности, основную нейронку по распознаванию и интерпретации текста создали в Google.

А вообще на серьезный уровень такие разработки выходят, как правило, когда в них появляется потребность у госструктур.

В новостях часто мелькает: вот некая компания создала свою нейронку – и она рисует котов, или новая нейросеть умеет определять инсульт по походке, а еще одна генерит рецепты… Их так много? У них есть какая-то общая база, от которой они отталкиваются?

Базы как таковой нет, но есть несколько схем нейронных сетей и общий принцип их обучения. Отличаются нейросети, по сути, только количеством связей. При этом то, что в одной связей больше, чем в другой, вообще не говорит о том, что первая работает лучше.

Окей, качество работы «делается» количеством данных, а не связей (и тем, как эти данные используют при обучении). А связи тогда – это что? И на что они влияют?

Связи – это в прямом смысле нейронные связи. Можно обучить нейронку распознавать киви как картошку, а можно на самом деле обучить ее распознавать киви как киви. Поэтому и существуют разные методы обучения, которые нужно правильно использовать. И когда реально есть большие данные, нейронная сеть может сама производить анализ. В какой-то момент она поймет, что киви – это все-таки не картошка.
Как учится нейронная сеть

Как вообще обучается нейросеть – простыми словами?

Как ребенок. Условно, ей показывают тысячу фотографий кота и говорят – это кот. И ничего больше не объясняют про «усы, лапы и хвост» – она про них сама «догадается». И на тысяче первой фотографии она должна понять, что это кот.

«Понять» в отношении нейросети – это, конечно, «перевод» на человеческий язык. Но привычное по отношению к программам выражение «вычислить результат» здесь тоже уместно. Просто традиционная программа делает это на основе четко заданных алгоритмов (2 + 2 = 4), а нейронка – на основе алгоритмов постоянного самообучения на данных.

Кстати, если среди тысячи картинок не найдется фото кота без шерсти, – а такие ведь существуют – то какого-нибудь лысого канадского сфинкса она может и не опознать как кота. Человек, увидев такого в первый раз, просто удивляется, но все же делает вывод, что это кот. Нейросеть может догадаться – а может и не догадаться. Поэтому очень важно с умом подбирать данные для ее обучения.
Нейросеть рисует котов
Нейросеть рисует котов

Коты, сгенерированные нейросетью Russian DALL-E (она же помогла нарисовать обложку этой статьи). Не придерешься: и усы, и лапы, и хвост – все на месте

Конкретно такой метод называется обучением «без учителя». То есть отдаются некие данные, запускается работа нейронки – и через некоторое время получается результат. Да, как на этих картинках… это представление нейронки о том, как должен выглядеть кот, и даже вполне близкое к человеческому. Но даже при такой модели необходимо задать так называемые «векторы», по которым будет происходить обучение.

А есть второй метод – обучение «с учителем», он встречается чаще, поскольку там нет «экспериментов». Берется снимок кота и делается разметка: это – лапы, это – хвост, это – нос… и снова нейронке отдается массив данных. Она строит связи – и потом уже на основе этих более сложных данных делает более сложные выводы – вот это кот… а вот это уже пес.